Expectation-Maximization Algorithm and Image Segmentation
نویسنده
چکیده
In computer vision, image segmentation problem is to partition a digital image into multiple parts. The goal is to change the representation of the image and make it more meaningful and easier to analyze [11]. In this assignment, we will show how an image segmentation algorithm works in a real application. In the Electronic Field Guide (EFG) project, researchers want to segment the leaf region from an image and extract a set of points from the contour to represent the shape of leaf [2]. A leaf image typically contains a single piece of leaf on a surface with rather uniform pattern. This makes the segmentation problem easier. Figure 1 shows an example of leaf images. A matrix of pixels represents a leaf image. Each pixel is a 3 by 1 vector representing the value of red, green, and blue components respectively. Each value is an integer value between 0 to 255. Instead of working on this 3-dimensional data, we transform a pixel in hue, saturation, and value domain (HSV) [7], and get rid of the hue component. Our task is to group this 2-dimensional data into two clusters: the leaf region and non-leaf region.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملHMRF-EM-image: Implementation of the Hidden Markov Random Field Model and its Expectation-Maximization Algorithm
In this project1, we study the hidden Markov random field (HMRF) model and its expectation-maximization (EM) algorithm. We implement a MATLAB toolbox named HMRF-EM-image for 2D image segmentation using the HMRF-EM framework2. This toolbox also implements edge-prior-preserving image segmentation, and can be easily reconfigured for other problems, such as 3D image segmentation.
متن کاملA multiresolution diffused expectation-maximization algorithm for medical image segmentation
In this paper a new method for segmenting medical images is presented, the multiresolution diffused expectation-maximization (MDEM) algorithm. The algorithm operates within a multiscale framework, thus taking advantage of the fact that objects/regions to be segmented usually reside at different scales. At each scale segmentation is carried out via the expectation-maximization algorithm, coupled...
متن کاملAn Expectation Maximization-Like Algorithm for Multi-Atlas Multi-Label Segmentation
We present in this paper a novel interpretation of the concept of an “expert” in image segmentation as the pairing of an atlas image and a non-rigid registration algorithm. We introduce an extension to a recently presented expectation maximization (EM) algorithm for ground truth recovery, which allows us to integrate the segmentations obtained from multiple experts (i.e., from multiple atlases ...
متن کاملA New Multiresolution Algorithm for Image Segmentation
The current literature on MRI segmentation methods is reviewed. Particular emphasis is placed on the relative merits of single image versus multispectral segmentation, and supervised versus unsupervised segmentation methods. Image preprocessing and registration are discussed, as well as methods of validation. In this paper, we present a new multiresolution algorithm that extends the wellknown E...
متن کامل